Mean free path and shear viscosity in central ¹²⁹Xe+¹¹⁹Sn collisions below 100 MeV/nucleon

H.L. Liu,^{1,2,3} Y.G. Ma,^{1,3} A. Bonasera,^{4,5} X.G. Deng,^{1,2} O. Lopez,⁶ and M. Veselsky⁷
¹Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
²University of the Chinese Academy of Sciences, Beijing 100080, China
³School of Physical Science and Technology, ShanghaiTech University, Shanghai 201203, China
⁴Cyclotron Laboratory, Texas A & M University, College Station, TX, USA
⁵INFN, Laboratori Nazionali del Sud, Catania, Italy
⁶Laboratoire de Physique Corpusculaire, ENSICAEN, Universite de Caen Basse Normandie, CNRS/IN2P3, F-14050 Caen Cedex, France
⁷Institute of Physics, Slovak Academy of Sciences, Dubravsk'a cesta 9,84511 Bratislava, Slovakia

Thermal and transport properties of hot nuclear matter formed in central ¹²⁹Xe + ¹¹⁹Sn collisions at the Fermi energy are investigated using the isospin-dependent quantum molecular dynamical (IQMD) model [1]. Temperature (T), average density (ρ), chemical potential (μ), mean momentum (P), shear viscosity (η) and entropy density (s) are obtained from the phase-space information. The mean free path (σ_{nn}) and the in-medium nucleon-nucleon cross-section (λ_{nn}) in the largest compressible stage at different incident energy are deduced and compared with the experimental results from Phys. Rev. C 90,064602 (2014). The result shows that λ_{nn} and σ_{nn} have the same trend and similar values as the experimental results when the beam energy is greater than 40 MeV/nucleon at maximum compressed state. Furthermore, the derived shear viscosity over entropy density (η /s) shows a decreasing behaviour to a saturated value around $\frac{3}{4}\pi$ as a function of incident energy.

[1] H.L. Liu et al., Phys. Rev. C 96, 064604 (2017).